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Received 5 February 1976 

Abstract. The trail problem on the square lattice is studied by the method of exact 
enumeration and its relation to the self-avoiding walk problem is pointed out. The number 
of N-stepped trails and their mean-square sizes are enumerated on a computer up to 
N =  17. An asymptotic analysis of the numerical data suggests that certain critical expo- 
nents obey the same values for both the trail and the self-avoiding walk problem on the 
square lattice. 

1. Introduction 

The problem to be discussed in this paper is closely related to the well known model of 
self-avoiding walks (SAW) on a crystal lattice; the latter being of considerable physical 
importance for it takes account in a realistic way of the ‘excluded volume’ effect of a 
polymer chain in dilute solutions (Domb 1963). 

A SAW does not involve double occupancy of any (lattice) site, whereas in a truil no 
(lattice) edge occurs (or is visited) more than once. In a previous paper (Malakis 1975) it 
was pointed out that there is a one-to-one correspondence between trails on a closed 
oriented lattice (for definitions see Essam and Fisher 1970) and SAW on its covering 
lattice. On the one-dimensional lattice the trail and the SAW problems are equivalent by 
definition. Furthermore, on unoriented lattices of coordination number z = 3 (i.e. the 
honeycomb lattice) there is a striking similarity between the trail and the SAW problems. 
Indeed, in this case, if the formation of loops at the end points of the walks is forbidden, 
then these two problems become identical. 

The above mentioned relationships would suggest that the trail problem obeys the 
same critical exponents as the SAW problem. However, for unoriented lattices with 
z 3 4 there is no simple relation between SAW and trails on the same lattice; or trails on a 
lattice and SAW on its covering lattice. The most one can say in such cases is: ‘to every 
trail on a lattice there corresponds a SAW on its covering lattice but not vice versa’. 

Consider in particular the unoriented square lattice (s lattice). In this case the trail 
problem is essentially different from the SAW problem and any conclusion concerning 
critical behaviour should be drawn with caution. Nevertheless, an equivalence between 
SAW on the ‘Manhattan-oriented’ square lattice (MS lattice) and certain ‘intersecting 
walks’ on the s lattice (see Malakis 1975) has lead the present writer to conjecture that 
critical behaviour is the same for both the trail and the SAW problem on the s lattice. 

The present paper is intended to study (numerically) the trail problem on the s 
lattice and in particular to compare critical behaviour between SAW and trails. Using the 
method of ‘exact enumeration on a computer’ (Domb 1969) we have determined the 
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total number of N-stepped trails on the s lattice, Ch, and their mean-square end-to-end 
distances, (Rk)', up to N =  17 (see table 1). The program has been developed by the 
present writer and was written in ALGOL 60. 

Section 2 has been devoted to a detailed analysis of CL, while § 3 undertakes a 
similar analysis for (I?;)'. Finally, our conclusions are summarized in § 4  where an 
argument is presented to point out that although critical indices may not be altered by 
'weak nearest-neighbour forces' in one and two dimensions this may not be true for 
three-dimensional lattices. 

Table 1. The trail problem on the square lattice. 

N cfv ( R 2 '  

4 108 6,518519 
5 3 16 8.696203 
6 916 11.021834 
7 2628 13-5 17504 
8 7500 16- 140800 
9 21268 18.921384 
10 60092 21.824935 
11  168984 24.877764 
12 474284 28.032174 
13 1326152 31.340570 
14 3703376 34.740619 
15 103 12836 38.281823 
16 28687804 41.913553 
17 79629072 45.681001 

2. Asymptotic analysis of the number of trails 

Hammersley (1957) has proved the existence of the connective constant p for the SAW 

problem on lattices satisfying certain very general conditions. The existence of such a 
constant for the trail problem can be easily established by a subadditivity argument 
similar with that employed by Hammersley (1957). 

Throughout our treatment we shall assume the existence of p for the trail problem. 
Furthermore, by analogy with the SAW problem we may assume that the number of 
trails on a lattice Ch is given by the asymptotic formula (1). Accordingly we shall use 
well established methods (from the theory of SAW; see Domb 1969) to estimate the 
connective constant p and the critical exponent CY for the trail problem on the s lattice: 

Ch = NPp ". (1) 
Consider the successive ratios pN = C N + , / C N ,  shown in table 2. If the formula (1) 

were exact (for small values of N), then the linear projections pg defined by analogy 
with (2) should provide rapidly converging estimates of p :  

x g= (1  / i)[(N + i ) x N + i  - N x N ] .  (2) 
Table 2 also shows the values of the estimates pg, obtained from (2) where i = 1, and 
where i = 2. The variation of these estimates suggests the following: 

p = 2.715 TO-005. (3) 
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Table 2. Estimates for the connective constant of the trail problem. 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

2.9259 

2.8987 

2.8690 

2.8539 

2.8357 

2-8255 

2.8121 

2.8067 

2.7961 

2.7926 

2.7847 

2.7818 

2.7757 

2,7899 

2.7203 

2.1632 

2.7087 

2.7433 

2,6917 

2.7526 

2.6799 

2.7501 

2.6825 

2.7404 

2,6850 

2.7551 

2.7418 

2.7359 

2.7260 

2.7175 

2,7221 

2.7162 

2.7150 

2.7163 

2.7115 

2.7127 

On the basis of (3) the following conjecture might be made: 

p =e=2.7182. .  . . (4) 
A similar conjecture was made in the early history of the SAW problem. Lehman and 
Weiss (1958) conjectured that the connective constant for the SAW problem on the s 
lattice was given by (4). Today after extensive enumerations of SAW on the s lattice (up 
to N = 26, Sykes er al 1972d) there is no doubt that their conjecture is invalid, although 
this has not as yet been rigorously proved (Beyer and Wells 1972). 

Now let us suppose that the value of the critical exponent a is known, then the 
estimates ph defined by ( 5 )  would be expected to provide more accurate information 
for the connective constant. But even if the value of a, used in (3, is in error these 
estimates will eventually converge to the limiting value p :  

P kl = "AN + a ). (5 )  
On the basis of the evidence provided by Watson (1970,1974) and Malakis (1975), 

it seems reasonable to expect that the critical exponent a for the trail problem will be 
the same as (or very close to) the value of a for the SAW problem. Accordingly, 
following the literature, we may assume that a = f  (Fisher and Sykes 1959). The 
variation of the estimates pk against 1 /N ( N =  6,8, . . . , 16) for a = 0.32, 
a = 0.333 . . . and a = 0.34 is shown in figure 1. The linear projections (ph)*, obtained 
by analogy with (2) where i = 2, suggest an estimate closer to the value 2.713 rather 
than the value 2.7182.. . . 
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Figure 1. Plot of the estimates fihagainst l/Nfor three values of the critical exponent a. 

On the other hand, knowledge of the value of the connective constant would provide 
us with the estimates aN, given by (6), for the critical exponent a : 

a N  = N ( p N - p ) / p -  (6) 

The values of these estimates, obtained using the values p = e  = 2.7182 . . . and 
p = 2.713, are shown in table 3. In both cases the estimates aN are higher than the 
conjectured value a =f. However, we observe that the estimates a N ( p  =e), i.e. 
obtained using the value p = e, are all closer to the value a = $ than the corresponding 
values a& = 2.713). 

Furthermore, the behaviour of these estimates is smoother for the trail problem 
than for the SAW problem. To illustrate this, we have also included in table 3 the 
estimates aN corresponding to the SAW problem, obtained by utilizing the estimate 
p = 2.6385 given by Sykes et a1 1972c. To account for the characteristic even-odd 
oscillation, observed for loose-packed lattices, we shall further form the estimates 
GN = (aN + aN-,)/2. Table 4 shows the values of EN (N = 8,9,  . . . , 16) corresponding 
to: (a) the trail problem using the value p = e; (b) the trail problem using p = 2.7 13; and 
(c) the SAW problem using p = 2.6385. 

Finally, we have attempted to investigate the conjecture p = e by employing the 
'ferromagnetic' and !antiferromagnetic' type of approximations used by Guttman et a1 
(1968, see also Sykes et a1 1972~).  These approximations were developed from the 
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Table 3. Estimates for the critical exponent a. 

Trail problem SAW problem 

N aN(p = e) aN(p = 2.713) a ~ ( p  = 2.6385) 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0.3055 
0.3319 
0.3327 
0.3492 
0.3457 
0,3549 
0.345 1 
0.3577 
0.3436 
0.3553 
0.3421 
0.3503 
0.3380 

0.3139 
0.3422 
0.3450 
0.3635 
0.3618 
0.3732 
0.3653 
0.3799 
0.3676 
0,3814 
0.3700 
0.3804 
0.3698 

0.3055 
0.2046 
0.3323 
0.2262 
0,3376 
0,2468 
0.3381 
0.2614 
0.3384 
0.2715 
0.3388 
0,2792 
0.3393 

Table 4. Estimates for the critical exponent a. 

Trail problem SAW problem 

N G N ( F  = e) Z N ( ~  ~ 2 . 7 1 3 )  6~(/ .~=2.6385) 

8 
9 
10 
11 
12 
13 
14 
15 
16 

0,3474 
0.3503 
0.3500 
0.3514 
0,3507 
0.3494 
0.3487 
0.3462 
0.3442 

0.3627 
0.3675 
0.3693 
0.3726 
0,3738 
0.3745 
0.3751 
0.3752 
0.3751 

0.2819 
0.2922 
0.2925 
0*3000 
0.3000 
0.3050 
0,3052 
0.3090 
0.3093 

analysis of Ising series (Sykes et a1 1972a,b) and may be defined by (7) and (8) 
respectively: 

ph= p ( l  +X/N2) (7) 

ph= p(l + ( - l ) N x / N e ) .  (8) 
By solving (7) or (8) for p and x using pairs of the estimates ph (given by ( 5 ) )  one 
obtains a sequence of estimates for p. Alternate pairs of phare usually employed in the 
‘ferromagnetic’ approximation, whereas successive pairs of ph may be employed when 
using the ‘antiferromagnetic’ approximation since the latter takes account of the 
characteristic even-odd oscillation. Although various values of Q and 8 were used in 
determining these approximations, these were chosen close to the values cr = 4 and 
6 = 1.86 (see Sykes ef al 1972c, Martin eta1 1967). This kind of analysis suggested that 
p is indeed very close to the conjectured value p = e, but the parameter x in (7) and (8) 
was found to be ill-defined. 



1288 A Malakis 

In the light of the material presented in this section the following remarks might be 
made. Firstly, the behaviour of the various estimates, such as p N  and aN, appears to be 
smoother for the trail problem than for the SAW problem. Therefore, it is of some 
importance to carry out further enumerations for this particular case. Secondly, if the 
conjecture p = e is valid, or if the value of p lies very close to the conjectured value e, 
then one would argue that the estimates presented in tables 3 and 4 strongly support the 
view that the critical exponent a is the same for both the trail and the SAW problem on 
the s lattice. Furthermore, the variation of the estimates GN(p =e), presented in table 
4, supports the conjectured value (Y = f. 

Finally, if further enumerations show that the value of the connective constant for 
the trail problem lies closer to 2.713 than to the value 2.7182 . . . , and if the constancy 
observed in the estimates GN(p = 2*713)-see table 4-is maintained, then one would 
have to accept that certain conclusions drawn hitherto for the critical exponent a may 
not be valid. In particular this would cast doubts on the validity of the conjecture that a 
depends only on dimensionality (Fisher and Sykes 1959, Domb 1969) and also on the 
recent conjecture that a is not changed by 'weak attractive forces' (Watson 1974, 
Malakis 1975). 

3. Analysis of mean-square sizes 

The primary purpose of this section is to present numerical evidence utilizing the results 
obtained by the method of exact enumeration (table 1). In accordance with our earlier 
discussion we shall assume that the asymptotic behaviour of (R;)' (i.e. mean-square 
end-to-end distance for trails) will be similar to the asymptotic behaviour of (R;);)" (i.e. 
mean-square end-to-end distance for SAW). Accordingly the asymptotic form (9) will be 
employed (see Domb 1969): 

(R$)'=AN". (9) 

If (9) is valid, then the successive estimates yN, defined by (lo), should converge to 
their limiting value y: 

yN = N[((Rk+I>'/(Rk)')- 11. (10) 

Table 5 shows the values of the estimates Y N  and j&, (defined by .i;~ =;(?,+I + yN)) 
tabulated together with the linear projections j$,and ?$* (obtained by analogy with (2) 
for i = 1 and i = 2 respectively). 

In our opinion table 5 provides the most convincing evidence that the critical 
exponent y is the same for both the trail and the SAW problem on the S lattice. 
Furthermore the variation between the different estimates shown in table 5 strongly 
supports the conjecture made by Domb (1963) that y = 3 in two dimensions. 

If the critical exponent y is the same for trails and SAW, then the ratios rN, defined by 
(1 l), should tend to a non-zero limiting value (for the values of (RL)'; see Domb 1963, 
Malakis 1975): 

The values of rN (N=4,5 , .  . . , 17) are tabulated in table 6 ;  the last two columns of 
table 6 are obtained by repeated application of (2), where i = 2. Examination of the 
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T a b  5. Estimates for the critical exponent y derived from the trail problem. 

1289 

~ 

N YN 
- 
YN 

-* 
Y N  i%* 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1.33632 

1.33714 

1.35859 

1,35847 

1.37817 

1.38106 

1.39882 

1.39502 

1.4 1597 

1.4 103 1 

1.42706 

1.42305 

1.43816 

1.33673 

1.34787 

1,35853 

1.36832 

1,3796 1 

1.38994 

1.39692 

1.40549 

1.41314 

1.41868 

1.42505 

1.43061 

1.39242 

1.41187 

1 *42704 

1,45867 

1,47251 

1.45975 

1 e49 127 

1.49725 

1.48520 

1.50787 

1.50832 

1.402 14 

1.41945 

1.44285 

1.46559 

1.46613 

1.47551 

1.49426 

1.49123 

1.49654 

1.50809 

Table 6. Comparison between mean-square sizes for the trail and the SAW problems. 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

0.92592 
0.90932 
0.87653 
0,86895 
0,84894 
0.84428 
0.83166 
0.82877 
0.81998 
0.81820 
0.81195 
0.81075 
0.80615 
0.80543 

0.77773 
0,76801 
0.766 19 
0.75793 
0.76254 
0.75900 
0.76159 
0.76001 
0.75377 
0.76232 
0.76550 
0.76552 

0,73158 
0.72265 
0.74790 
0.76382 
0.75688 
0.76591 
0.77686 
0.77696 
0.77755 
0.78956 

extrapolated results suggests that rN tends to a non-zero limiting value and this would, 
of course, imply that the critical exponent y is the same for both trails and SAW on the s 
lattice (provided that the trends towards a non-zero limiting value will persist for large 
values of N). 
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Finally, on the basis of the various estimates in table 6, we shall estimate: 

r = lim r, = 0.76F0.015. (12) 

(R;)‘ = (0.574T0*012)N3’2. (13) 

N+w 

Thus, using the asymptotic formula proposed by Domb (1963) for (I?;),)”, we obtain: 

4. Conclusions 

The numerical evidence of the last two sections greatly supports the view that the 
critical exponents a and y are the same for both the trail and the SAW problem on the s 
lattice. This is, no doubt, true (although a rigorous proof is required) for the honeycomb 
lattice since in this case these two problems are almost identical. Thus, it would appear 
reasonable to expect that the above described equivalence (regarding critical 
behaviour) may be valid for all two-dimensional lattices. 

It was conjectured in a previous paper (Malakis 1975) that by restricting the walks to 
visit a (lattice) site not more than k times, a significant change on the critical exponents a 
and y (and in particular on y )  will not be produced whenever k is finite and N+ CO. We 
shall designate these walks ‘k-tclzrant walks’, whereas the term ‘k-tolerant trails’ could 
be used for walks which may visit a (lattice) edge at most k times. 

However, let us point out that although the conjecture advanced above is likely to be 
true for the k-tolerant walk problem in one and two dimensions, it may not be true 
(even for small values of k) in three dimensions. There are several reasons why this 
distinction should be made between one- and two-dimensional lattices on the one hand, 
and three-dimensional lattices on the other. To mention only two of these we shall recall 
some known results of the theory of random walks on lattices. 

It is well known that random walks on three-dimensional lattices have a finite 
chance of escaping from the origin for ever, while on one- and two-dimensional lattices 
they return to the origin infinitely often. Also it should be pointed out that Montroll and 
Weiss (1965) have shown that if SN denotes the average number of distinct lattice sites 
visited during an N-stepped random walk, then SN satisfies the following: 

( ~ / ? T ) ” ~ N ” ~  in one dimension 

S N  = .IrN/lnN in two dimensions (14) i NIP@, 1) in three dimensions 

where P(0, 1) is a constant whose value depends on the particular three-dimensional 
lattice and is related to Polya’s probability of return to the originf by P(0, 1) = 1/( 1 -f). 
As regards the SAW problem SN = N, whereas for the k-tolerant walk problem one 
would expect S ,  = N/c, where c s k. 

Since N/SN for the random walk problem tends to infinity for one- and two- 
dimensional lattices, while it tends to a constant for three-dimensional lattices, it 
follows that our conjecture concerning the k-tolerant walk problem is not likely to be 
true in three dimensions while its validity for the one- and two-dimensional lattices 
cannot be rejected on such grounds. We note that N/SN would be interprered as the 
‘mean’ repeated occupancy over all visited points bearing in mind, however, that the 
repreated occupancy of a lattice site depends on its location with respect to the origin. 
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